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Abstract: The main bottleneck of applications of belief function models to problems
of practice lies in the fact that a belief measure, in contrast to a probability or possi-
bility measure, cannot be represented by a density function. It is a set function and
for its representation one needs an exponential number of parameters (exponential
with the size of a finite space on which the belief function measure is defined). There-
fore, one has to employ some approaches enabling reduction of necessary parameters.
i In the contribution we will discuss an approach utilizing properties of conditional in-
i dependence relations that will enable us to assemble a multidimensional model from
\ a system of its simple submodels. Unfortunately, concept of conditional indepen-
dence has been for belief functions defined in several ways and none of them fully
meets our requirements. Therefore we will also discuss a new approach how to define
this basic concept, which is based on the notion of an operator of composition.
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1 Introduction

The main bottleneck of applications of belief function models to problems of practice lies in
the fact that a belief measure, in contrast to a probability or possibility measure, cannot be
represented by a density function. It is a set function and for its representation one needs an
exponential number of parameters (exponential with the size of a finite space on which the belief
function measure is defined). Therefore, one has to employ some approaches enabling reduction
of necessary parameters. In this contribution we will discuss an approach utilizing properties of
conditional independence relations that will enable us to assemble (compose) a multidimensional
model from a system of its marginal submodels. This is also the reason why these models are
called compositional models.

These models were originally proposed as an alternative to Bayesian networks for multidimen-
sional probabilistic distributions representation. They were based on a simple idea: multidimen-
sional distribution was composed from a system of low-dimensional distributions by repetitive
application of a special operator of composition. In this paper, such an operator of composition
will be introduced for belief functions, and it will be shown that it can be considered as a true
generalization of the operator of composition for probability distributions.
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2 Belief Function Models

2.1 Set Projections and Extensions

In the whole paper we shall deal with a finite number of variables X1, Xo, ..., X}, each of which
is specified by a finite set X; of its values. So, we will consider multidimensional space (in the
belief function setting it is usually called frame of discernment) Xy = X; x X x ... X X,
and its subspaces. For K C N = {1,2,...,n}, Xk denotes a Cartesian product of those X, for
which ¢ € K: X = XX, and Xg = {Xi}ick denotes the set of the respective variables.

A projection of z = (z1,29,...,2n) € Xn into Xk will be denoted oK je. for K =
{i1,d2,...,3¢} % = (24, 2i,, ..., 2;,) € Xk. Analogously, for K C L € N and A C X, ALK
will denote a projection of A into Xkg:

A = {yeXg:3zxe A (y=H).

In addition to the projection, in this text we will need also an opposite operation which will
be called extension. By the extension of two sets A C X, and B € X, we will understand a
set
A®B= {l’ S XK1UK2 : :ElKl ceA & iL‘lK2 € B}.
In what follows, an important role will be played by special sets, which were in {1] called
Z-layered rectangles. These are those sets C € Xk, Uk, for which

C = Cct g o,

2.2 Composition of Basic Assignments

A belief function is defined with the help of a basic (probability or belief) assignment m on Xy,
which is a set function
m: P(Xny) — [0, 1]

Z m(A) = 1.

ACX N

with

Therefore, for the sake of simplicity, we will not speak about belief functions but about basic
assignments: We shall marginalize and compose basic assignments. For each K C N marginal
basic assignment of m is defined (for each B C Xg):
m'¥(B) = Z m(A).

We say that two basic assignments m; and my defined on Xk, and Xg,, respectively, are

. . . 1K1NKo _ lKlﬁKg
projective if m] =m; .
Now, we can define the most important notion of this paper, which was originally defined in

[4]-

Definition 1 For arbitrary two basic assignments m; on X, and mg on Xk, (K1 # 0 # Ka)
a composition m; b my is defined for each C C Xg,uk, by one of the following expressions:

al if miFNK(OlKINK2) 5 g gnd € = CYK1 @ CYE2 then
2

ml(clk’l) . mz(Cle),
m%KlmKZ(ClKlﬂKz) ’

(mip> mg)(C) =

[b] if miKiNK2(CLKINK2) = 0 and C = CHEY x X, g, then (m1bmg)(C) = my(CH);

[c] in all other cases (m1b>mg)(C) = 0.



2.3 Basic Properties of the Operator of Composition

Let us stress, for the reader familiar with the Dempster’s rule of combination [6], that the
introduced operator is something quite different.

First, Dempster’s rule of combination was defined for two basic assignments defined on
the same frame of discernment. In contrast to this, there is no restriction regarding frames of
discernments of arguments connected with the introduced operator of composition. Nevertheless,
composition of basic assignments defined on the same frame of discernment is uninteresting,
because in this case the result is always the first argument - see property (2) of Lemma 2.

The reader should keep in mind that the operator of composition was designed for the
situations when one has two basic assignments defined on different frames of discernment and
wants to get a new basic assignments defined on a larger frame of discernment incorporating (as
much as possible of) the information contained in the original basic assignments.

In this section we shall recollect most of the important properties of the operator of compo-
sition, most of which were proved in [4].

Lemma 2 For arbitrary two basic assignments m; on Xg, and mg on X, the following prop-
erties hold true:

1. my>my is a basic assignment on Xk UKk,;

1Ky

2. (myv>mg) my;

K Kin
J. mibmg=mgobm; << m% anzzm% 1 Kz;

4. If L C Ky then m¥ismy =my;
5. If K1 2 (K3 N K3) then (my>mg)>mg = (my>m3)d>mas.

Realize that property (3) of the preceding Lemma says that the operator is commutative if
and only if it is applied to two projective basic assignments. Generally, it is neither commutative
nor associative.

3 Composition of Bayesian Basic Assignments

It is well known that if all focal elements (subsets of frame of discerment for which the basic
assignment is positive) of m are singletons, i.e. if m(A) > 0 implies that |4| = 1, then this
basic assignment corresponds to a probability distribution, and it is why some authors call it
Bayesian basic assignment. Regarding the fact that operators of composition were originally
defined for composition of probability distributions* a natural question arises: What is the
relation of compositional models in these two theoretical frameworks? To answer this question
we shall compare the properties of the corresponding operators of composition. But first, let us
recollect how the operator of composition is defined in its probabilistic version.

Let us start considering probability distributions p; defined on Xk, (i.e. p; : Xk, — [0, 1]
ind 3~ pi(z) = 1). Analogously to the notation used for basic assignments, their marginal

IGXKi

listributions (for L C K;) will be denoted p;”‘. Realize that p;(8) = 0, but pzw((?)) = 1.

*Probabilistic compositional models were designed as a non-graphical alternative to Bayesian networks and
her Graphical Markov models in [3].




Definition 3 Consider arbitrary two probability distributions p; and ps defined on Xg,, Xg,,
respectively (K # 0 # K,). If p{Ksz is dominated by p%KlmK2, ie.

Vze Xk, P 0(2) = 0= pt" "2 (2) =0,
then p; b po is for all x € Xk, defined by the expression

pl(lel) -pz(mlkz)
PR (g )

(P> p2)(z) =

(In case of necessity we define 0-(')9 = 0.) Otherwise the composition p; > ps remains undefined.

The reader certainly noticed the main difference between the definitions of operators of
composition in the two considered theoretical settings: In contrast to composition of basic
assignments, it may happen that the composition of probability distributions in not defined. It
occurs when péKsz does not dominate p%KmK"’. In other words, it is undefined if there would

be for some z € Xgyr value (p1 > pg)(z) defined by an indeterminate term

(p1op2)(z) = pl(z—lgl)—'g

with p;(z1¥1) > 0.

In [4] we proved that if we compose by the operator! of composition two Bayesian basic
assignments, such that the corresponding probability distributions may be composed by the
probabilistic operator of composition (i.e. the probabilistic composition is defined) then the
resulting distribution is again Bayesian. The assertion we are presenting here is a little bit
stronger: It says that the resulting compositions coincide.

Lemma 4 Let m; and my be Bayesian basic assignments on Xk, and Xg,, respectively, such
that for all A C Xk nk, it holds that mal 17K (A) = 0 = m 1 K17K2(A) = 0. Let p; and p,
be probabilistic distributions for which mi({z}) = pi1(z) and ma({y}) = p2(y) hold true for all
T € Xk, and y € Xk,. Then mi >mgy is a Bayesian basic assignment and

vz € Xk, uk,(m1 > me)({z}) = (p1>p2)(2).

4 Generalization of Probabilistic Models

In this section we shall make a couple of suggestions enabling us to understand multidimensional
models of basic assignments as a real enrichment of probabilistic models. First let us have a look
how the concept of conditional independence was introduced in these two theoretical settings.

Consider three disjoint sets I,J, K C N (I # @ # J) and a probability distribution p on
X n. We say that for distribution p groups of variables Xy and X j are conditionally independent
given variables X if for all x € X, jui the following equality holds true

lIUJUK(z) 'le(CElK) — lIUK(:LJIUK) . leUK(zlJUK)‘

p p

It is well known that this is equivalent to the fact pt/WJUK = plIUK , lJUK,

How is it for basic assignments? Answering the question is not so easy because of the fact
that this notion for belief functions was introduced in several different ways. Perhaps the most

tNotice that by Definitions 1 and 3 we have introduced two operators of composition, both of which are denoted
by the same symbol >. We believe that it is obvious that for composition of probability distributions one has to
apply the probabilistic version, i.e. Definition 3, whilst for composition of basic assignments one has to apply
operator from Definition 1.




quent (and maybe also with the greatest number of supporters) is the one, which can be easily
ined with the help of commonality function. Using notation of Studeny (8], commonality
ction Com,, is defined for basic assignment m (assuming that m is defined on X ) for each
~ X by a simple formula
Comp(A) = Z m(B).
BDA

n Yaghlane et al. [1, 2] define the concept of conditional non-interactivity (as well as Shenoy
ines his concept of conditional independence [7]) in the way that variables X and variables
~are conditionally non-interactive given variables Xg if and only if for all A C Xy

CommouuK(AuUJUK) : Comle(AlK) = CommuuK(AUUK) : CommuuK (AlJUK).

this paper we shall denote this property by X1 1L, X|Xk.
Unfortunately, for basic assignments it does not hold true that Xy L X J| Xk if and only
he basic marginal assignment mY/YK factorizes in the following sense

mlIUJUK — mlIUK > mlJUK. (*)

evertheless, there are still properties indicating a similarity of these two notions, which are
nmarized in the following simple assertion.

oposition 5 Consider a basic assignment m on Xy and three disjoint subsets [,J, K C N
£0#J). If A C Xjusuk is a focal element of mYIVE and A # AMVE R AVVK then neither
the following two expressions holds true: 1. Xy L X5 Xk, and

9. mAUIUK — pLIUK | o LJUK

So, the first property connecting the concepts of conditional non-interactivity and factoriza-
n for basic assignments is that any of them guarantees that the focal elements of the respective
ic assignment can be expressed as an extension of its corresponding projections (Z-layered
tangles in the language of Ben Yaghlane et al.).

Another connecting property says that these notions coincide for Bayesian basic assignments.
mely, in [8] Studeny claims that for Bayesian basic assignments the concept of conditional
1-interactivity coincides with the concept of conditional independence of the corresponding
bability distribution. Due to Lemma 4 the same holds also for the concept of factorization
:he sense of equality (*).

Let us now pinpoint the difference between the studied concepts. In [1] the authors admit
t their concept of conditional non-interactivity (as showed by Studeny) is not consistent with
rginalization|9, 10]. This means that it may happen that there are two basic assignments m;
| mo defined on X g and Xy, respectively (I, J, K disjoint, I # @ # J), for which there
s not exist a basic assignment m on Xj_juk, such that m; and msy would be its marginal
gnments and simultaneously X; L, Xs|Xk. For an example see [1}. Such a situation,
rever, cannot happen for the concept of factorization.

Taking into account also the fact that, as we showed in [5], factorization in the sense of
ality (*) meets all the semigraphoid axioms, we are making the following suggestion.

yposal 6 Introduce the concept of conditional independence relation for basic assignments
1 the help of factorization in the sense of equality ().

Probabilistic compositional models have, from the point of view of practical applications, a
«dvantage that a necessary composition need not be defined. It is true that it may happen
7 in situations when one composes probability distributions which are not consistent. But it
7 easily occur when one constructs a model from data from different sources or when a source
1 missing data is considered. To avoid this problem we propose the following solution.
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Proposal 7 Apply the operator of composition designed for basic assignments (Definition 1)
even when handling probability distributions and consider in some cases sets of probability dis-
tributions.

Surprisingly enough, realization of this proposal need not increase computational complexity
of the used algorithms. This statement is based on the fact that space complexity of these models
is not higher that space complexity of the corresponding probabilistic models.

5 Conclusion

In the paper we have introduced an operator of composition for basic assignments, which en-
ables us to construct multidimensional models from a sequences of low-dimensional assignments,
from so called generating sequences. Moreover, we showed these models are true generalization
of probabilistic models and therefore we propose to use them whenever classical probabilistic
model, due to incoherence of low-dimensional probability distributions, does not exist. To in-
crease consistency of probabilistic models and a wider class of models constructed from basic
assignments, we proposed also to introduce a new concept of conditional independence for basic
assignments: the concept corresponding to factorization in the sense of equality (x).
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