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Abstract: The main bottleneck of applications of belief function models to problems
of practice lies in the fact that a belief m€asure' in contrast to a probability or possi.
bility measute, cannot be represented by a density function. It is a set function and
for its representation one needs an exponential number of parameters (exponential
with the size of a finite space on which the belief function measure is defined). There-
fore, one has to employ some approaches enabling reduction of necessary parameters.
In the contribution we will discuss an approach utilizing properties of conditional in-
dependence relations that will enable us to assemble a multidimensional model from
a system of its simple submodels. Unfortunately, concept of conditional indepen-
dence has been for belief functions defined in several ways and none of them fully
meets our requirements. Therefore we will also discuss a new approach how to define
this basic concept, which is ba.sed on the notion of an operator of cornposition.
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Introduction

The main bottleneck of applications of belief function models to problems of practice lies in
the fact that a belief measure, in contrast, to a probability or possibility measure, cannot be
represented by a density function. It is a set function and for its representation one needs an
exponential number of parameters (exponential with the size of a finite space on which the belief
function measure is defined). Therefore, one has to employ some approaches enabling reduction
of necessary parameters. In this contribution we will discuss an approach utilizing properties of
conditional independence relations that will enable us to assemble (compose) a multidimensional
model from a system of its marginal submodels. This is also the reason why these models are
called compositional models.

These models were originďly proposed as an alternative to Bayesian networks for multidimen-
sionď probabilistic distributions representation. They were based on a simple idea: multidimen-
sional distribution was composed from a system of low-dimensional distributions by repetitive
application of a special operator of composition. In this paper, such an operator of composition
will be introduced for belief functions, and it will be shown that it can be consid.ered as a true
generalization of the operator of composition for probability distributions.

*The research was financially supported by GAČR under the grant no. ICC/08/E010, and by l\{inistry of
Education of the Czech Republic by grants no. 1M0522 and 2C06019.
The paper is a version of the paper ..Compositional Belief Fbnction l\,Íodels'' accepted for Proceed:ings of the
lth International Confercnce on Soft Computóng and Intelligent Sgstems, Nagoya, Japan, September I7-2I,20a8.
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2 Belief F\rnction Models

2.L Set Projections and Extensions

In the whole paper we shall deal with a finite number of variables Xr, Xz, . . . , X,, each of which
is specified by a finite set X; of its values. So, we will consider multiclimensional space (in the
be l i e f f u n c t i o n s e t t i n g i t i s u s ua l l y c a l l e d f r ameo Jd i s c en t n t en t ) X y : X t XX z x . . . XX r , ,
and its subspaces. For K C N : {1,2. .  . . ,n), X6 denotes a Cartesian product of those X;, for
wh i ch  i e  K :  XK :  X r e xX r , andX6 : {X t }nex  deno t e s t he se t o f  t he r e spec t i v e va r i ab l e s .

A project i 'on oÍ r : (r1, I2,. . . ' rn) e X1,, into X71 wi l l  be denoted , lK, i .e. for K :

{ h , i , , . . . , iů  r I K :  ( r l , , I , i ' , , , . . , r i t )  €  X r .  Ana l o gou s l y , Ío r  K  C  L eN  and  ACX7 ,  A l K
wi]l denote a projection of Á into X6:

A rK  -  
{ u  eX6  : 3 x  e  A  ( u :  r l K ) } .

In addition to the projection, in this text we will need also an opposite operation which will

be called extension. By the ertension of two sets Á e Xx, and B ! Xr, we will understand a
set

A8  B  _  { ,  e X r l uK z  . , I K ,  €  A  k  x I K ,  e  B } '

In what follows, an important role will be played by special sets, which were in [1] called

Z-layered rectangles. These are those sets C C XKruK, for which

g  -  g l K t  gC IK r .

2.2 Composition of Basic Assignments

A belief function is defined with the help of a basic (probability or belief) assignment rn on X,r,',
which is a set funct ion 

nt: p(xv,r)- '  [0, 1]

with
m(A ) : 1 .

Therefore, for the sake of simplicity, we will not speak about belief functions but about basic

assignments: We shall marginalize and compose basic assignments. For each K C N marginal

basic ossi.gnment of m is defined (for each B e Xr),

Tn t K (B ) :  t  r ( A ) .
AeXp:AlK:B

We say that two basic assignments m1 and m2 defined on X6, and X6r, respectively, are

projectiue if mlKfiKz - mlKt)Kz.
Now, we can define the most important notion of this paper, which was originally defined in

[4].

Definition L For arbitrary two basic ass,ignnzentsríL1 oTLX.1', and,T|]'2 orlXrc, (Kt#a# Kz)

a composition rn1>m2 is defi,ned for each C gXxrt..x, by one of the following erpressions:

Íd tÍ ̂ LK,nx, (ClxfiKz7 ) O and' Q : gIKt & CIK, then

(my>m2)(cr:W,

if rnlKraxz(Ctxfixz1 -- O and, g -- glh t Xrr\x, then (rn1> m)(C) : rnr(ClK');

in all other cases (m1>m2)(C) : g.

t
CX

tbl
["]
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2.3 Basic Properties of the Operator of Composition

Let us stress. for the reader familiar with the Dempster's rule of combination [0], that the
introduced operator is something quite different.

First, Dempster's rule of combination was defined for two basic assignments defined on
the same franre of discernment. In contrast to this, there is no restriction regarding frames of
discernments of arguments connected with the introduced operator of composition. Nevertheless,
composition of basic assignments defined on the same frame of discernment is uninteresting,
because in this case the result is always the first argument - see property (2) of Lemma 2.

The reader should keep in mind that the operator of composition was designed for the
situations when one has trvo basic assignments defined on different frames of discernment and
wants to get a new basic assignments defined on a larger frame of discernment incorporating (as
much as possible of) the information contained in the original basic assignments.

In this section we shall recollect most of the important properties of the operator of compo-
sition, most of which were proved in [a].

Lemma 2 For arbitrary two basic assignments rU onX6, and, m2 onX.6, the following prop-
erties hold trae:

1. mt>m2 is a basic assignment onXyroyr;

2 .  (mt>m2)!Kt  :  m! ;

3. n4D m2 - m2b tn1 <=+ mlKtnx, - mlKf ix '  '

4. IÍ L C Kl then -!,  ,  mL: T|4;

5 .  I Í  K I2  (K zn  K s )  t hen  (m1>^, )>m3:  ( n4>ms )>m2 .

Reďize that propertv (3) of the preceding Lemma says that the operator ís commutative if
and only if it is applied to two projective basic assignments. Generally, it is neither commutative
nor associative.

3 Composition of Bayesian Basic Assignments

It is well known that if all focal elements (subsets of frame of discerment for which the basic
assignment is positive) of m arc singletons, i.e, if m(A) > 0 implies that |Ái : 1, then this
basic assignment corresponds to a probability distribution, and it is why some authors call it
Bayesian basic ass'ignment. Regarding the fact that operators of composition were originally
defined for composition of probability distributions* a natural question arises: What is the
relation of compositional models in these two theoretical frameworks? To answer this question
we shall compare the properties of the corresponding operators of composition. But first, let us
recollect how the operator of composition is defined in its probabilistic version.

Let us start considering probability distributions p6 defined on X6, (i... pt: X71, ---r [0, 1]
lnd ' m@) :1). Analogously to the notation used for basic a.ssignments' their marginď

z€X,tí;

listributions (for .L q K) will be denoted p!1. zuan e that pe($) :0, but plu!) : t.

'Probabilistic compositional models were designed as a non-graphical alternative to Bayesian networks and
her Graphical lV'Íarkov models in [3].



Deffnition 3 Consider arbitrary two probability distributions p1 and p2 defined or X6r, X71r,
respectively (h # a i Ků. If plKtnxz is d'ominated by pj^'n*', i.u.

Vz  € X y ,ny , , IK f iKz1z )_  0  +  P !* ,n* ,1 ,1  :  g ,

then p1 > pz is for all x e XysT defined by the expression

(p t>pz)( r ) : m(r tK , )  . p z@Ixz1

,t*rn*, (rLKfiKz1

(In case of necessity we define %q = 0.) Otherwise the composition p1 >p2 remains undefined.

The reader certainly noticed the main difference between the definitions of operators of
composition in the two considered theoretical settings: In contrast to composition of basic
assignments, it may happen that the composition of probability distributions in not defined. It
occurs *hen pjKtnKt do". not domina1r- plKfiKz. In other words, it is undefined if there would
be for some Í € Xxur, value (p1 > pů(,) defined by an indeterminate term

@r>pz)@): tt+-

with pl(2l ř( ')  > 0.
In [4] we proved that if we compose by the operatorÍ of composition two Bayesian basic

assignments, such that the corresponding probability distributions may be composed by the
probabilistic operator of composition (i.e. the probabilistic composition is definď) then the
resulting ďstribution is agďn Bayesian. The assertion we are presenting here is a little bit
stronger; It says that the resulting compositions coincide.

Lemma 4 LetŤny and,m2 be Bayesianbosic assignments onX7', andX11,, respectiuely, such
that for ail A e XKrax, it holds that mrlKfiK, (A) - 0 + rnlKfiKz1l) : 0. Let pl and p2
be probabilistic distributions for uhich -,({,}) : pír) and m2({g}) : pz(y) hold tnle for aII
x € X5, and y q Xxz. Then Ťnl > m2 is a Bayesian basic assignment and

Vz €  XK,U x,(mt> -z)(,}): (pr > pz)("),

4 Generalization of Probabilistic Models

In this section we shall make a couple of suggestions enabling us to understand multidimensional
models of basic assignments as a real enrichment of probabilistic models. First let us have a look
how the concept of conditional independence was introduced in these two theoreticď settings.

Consider three disjoint sets I,J,K C N (I + A # J) and a probability distribution p on
X1*'. We say that for distribution p groups of variables X7 and X 1 are condit'ionally independent
g,iuen uaňables Xy if for all r e Xyg^Jy the following equďity holds true

p|IUJUK (r) .  ,Irc 6lK7 _ .IIUK (rI lUř() .  olJaK plJoKy'

It is well known that this is equivalent to the factpJ/uJuK - pllrK >plJux.
How is it for basic assignments? Answering the question is not so ea.sy because of the fact

that this notion for belief functions was introduced in several different ways. Perhaps the most
tNoti"" that by Definitions 1 and 3 we have introduced two operators of composition, both of which are denoted

by the same symbol >. We believe that it is obvious that for composition of probability distributions one has to
apply the probabilistic version, i.e. Definition 3, whilst for composition of basic assignments one has to apply
operator from Definition 1.
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quent (and maybe also with the greatest number of supporters) is the one, which can be easily
ined with the help of. commonality function. Using notation of Studený [8], commonality
rction Com^ is defined for basic assignment rn (assuming that m is defined on X1,') for each
I Xru by a simple formula

Corn*(A) :  '  Ťn(B) '
B )A

nYaghlane et aI. 11,2] define the concept of conditional non-interactivity (as well as Shenoy
ines his concept of conditional independence fl) in the way that variables X7 and variables
, are conditionally non.interactiue given variables X K if and only if for all Á ! Xru

CornrnLrutux(A l l r ) tux) 'Cont rn tx@I*) :  Com^l tvx(A l tuxr 'Com^l tux(AI 'u*) .

this paper we shall denote this property by X1 Ly"1X1lX6.
Unfortunately, for basic assignments it does not hold true that X1 )-'61 XtlXx if and only

;he basic marginal assignment TIIIUJUK factorizes in the following sense

"rnLIuJuK:vr l luKyyrIJt-tX. (")

evertheless, there are still properties indicating a similarity of these two notions, which are
nmarized in the following simple assertion.

oposition 5 Consider a basic assignment rn on Xy and three disjoint subsets I, J, K C N

*a+J) .  IÍA!Xru . lu r  i saJoca le lementofml lu l t l x  andA74 l t t l xaAIJoK thenne i ther
the following tuo expressions hold,s true: 1. X1 J 61 XrlX6, and

Z. mlIuJuK : 7nlIoK y *!Jt-tx .

So, the first property connecting the concepts of conditional non-interactivity and factoriza-
n for basic assignments is that any of them guarantees that the focal elements of the respective
iic assignment can be expressed as an extension of its corresponding projections (Z-layered
tangles in the language of Ben Yaghlane et aI.).
Another connecting property says that these notions coincide for Bayesian basic assignments.
meiy, in [8] Studený claims that for Bayesian basic assignments the concept of condÍtional
r-interactivity coincides with the concept of conditionď independence of the corresponding
bability distribution. Due to Lemma 4 the same holds also for the concept of factorization
;he sense of equality (*).
Let us now pinpoint the difference between the studiď concepts. In [1] the authors admit
t their concept of conditional non-interactivity (as showed by Studený) is not consistent uith
rginalization[9, 10]. This means that it may happen that there are two basic assignments rn1
lrnz defined on X7e6 and X..;ruK, respectively (I,J,K disjoint, I + A t J), for which there
s not exist a basic assignment nL on X1U136, súch that m1 and m2 would be its marginal
gnnrents and simultaneously X1 I1-1 XtlXx. For an example see [1]. Such a situation,
/ever) cannot happen for the concept of factorization.
Taking into account also the fact that, as we showed in [5], factorization in the sense of
ality (*) meets ďl the semigraphoid axioms, we are making the fo]]owing srrggestion.

rposal 6 Introduce the concept of conditional independence relation for basic assignments
z the help of factorization in the sense of equality (*).

Probabilistic compositionď models have, from the point of view of practicď applications' a
rdvantage that a necessary composition need not be defined. It is true that it may happen
r in situations when one composes probability distributions which are not consistent. But it
t easily occur when one constructs a model from data from different sources or when a source
r missing data is considered. To avoid this problem we propose the following solution.

1 i  --  I J



Proposal 7 ApplA the operator of composition designed for bastc asszgnments (Definition 1)
euen when handling probability distributions and consider in some cases sets of probability di,s-
tňbutions.

Surprisingly enough, realization of this proposal need not increase computational complexity
of the used algorithms. This statement is based on the fact that space conlp)exity of these models
is not higher that space complexity of the corresponding probabilistic models.

a Conclusion

In the paper we have introduced an operator of composition for basic assignments, which en-
ables us to construct, multidimensional models from a sequences of low-dimensional assignments.
from so cal]ed generating sequences' IVÍoreover, we showed these models are true generalization
of probabilistic models and therefore we propose to use them whenever classical probabilistic
model, due to incoherence of low-dimensional probability distributions, does not exist. To in-
crease consistency of probabilistic models and a wider class of models constructed from basic
assignments, we proposed also to introduce a new concept of conditional independence for basic
assignments: the concept corresponding to factorization in the sense of equality (*).
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